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A Possible Gauge Formulation for Gravity?
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Abstract

A possible Yang-Mills like lagrangian formulation for gravity is explored. The

starting point consists on two next assumptions. First, the metric is assumed as a

real map from a given gauge group. Second, a gauge invariant lagrangian density

is considered with the condition that it is related to the Einstein one up to a bound

term. We study a stationary solution of the abelian case for the spherical symmetry,

which is connected to the Möller’s Maxwell like formulation for gravity. Finally, it

is showed the consistence of this formulation with the Newtonian limit.

1 Introduction

From appearance of General Relativity theory, Quadratic Lagrangian Formulations (QLF)

for gravity in terms of Riemann-Christofell tensor have been considered [1, 2, 3, 4, 5, 6,

7, 8, 9]. Sometimes these models are called ”Yang-Mills type formulations”. In QLF,

Einstein field equations are recovered from Palatini’s variational principle [8]. On the

other hand, the addition of terms which are quadratic in curvature to the Einstein grav-

itational Lagrangian yields a theory where the renormalization problems are much less

severe [10]. This is similar to the situation in the Yang-Mills theories which are renormal-

izable [11, 12]. These results had motivated some authors to propose, for the gravitational

lagrangian, expressions which are quadratic in curvature [13, 14, 15, 16].
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In a parallel way to this current research, and immediately after the formulation of

Yang-Mills theory (YMT) [17], R. Utiyama [18] was the first to recognize the gauge

”character” of gravitational field. Taking into account the protagonical role of YMT

in the electro-weak model [19, 20, 21], one could think that this kind of theory is a

candidate for description and quantization of fundamental interactions. Thus, there is a

significant reason to considerate gauge formulations for gravity. Here, we are referring to

constructions where gravitation is described by means of agauge connection on a certain

fibre bundle. Within the variety of these theories [22, 23, 24, 25, 26, 27, 28], it must

be detached the Hamiltonian formulation of A. Ashtekar [25] from which a program for

quantization of gravity could be performed.

In this paper we present a possible quadratic gauge lagrangian formulation (i.e., Yang-

Mills like construction) for gravity linear in Ricci curvature, following the YMT and in

contrast to QLF. The starting point consists to consider real mappings of a connection

in order to obtain a metric. This idea is not new, i.e., in [28] are presented new gauge

theories of conformal space-time symmetries which merge features of YM theory and

gravity.

The paper is organized as follows. In section 2, we present two primary considerations

for the construction of a gauge invariant Lagrangian formulation, starting from the exis-

tence of a one-form connection that transforms under a given Lie group G. In section 3,

field equations and the relationship with the Einstein ones are presented. Next, in section

4, we study the abelian theory computing a stationary solution for the connection. It

is shown that there is a particular solution proportional to U(1) connection of Maxwell

type formulation of Möller for gravity. Finally, in section 5 the consistence between the

Yang-Mills like field equations for gravity and Newtonian limit is discussed. We conclude

with some remarks.
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2 A gauge Lagrangian formulation

Let G be a Lie group, simple and arbitrary with generators ta, a = 1, 2, ..., N . Let M4

be a differentiable but not necessarilly contractible base manifold. Thus, a fibre bundle

with G as structure group (principal fibre bundle) can be defined, assuming that the fibre

proyection, the transition functions, etc. are given. A one-form connection arise with

components Aµ = Aa
µta(µ = 0, 1, 2, 3), and transforms under the gauge group in a usual

manner

A′
µ = UAµU−1 + U∂µU

−1 , U ∈ G. (1)

Next, gauge invariant maps from G into reals numbers are considered. There are many

ways to construct such maps. For example, we can perform gauge invariant combinations

on functional traces in powers of Λµ(x) ≡ Aµ(x)− Aµ (x), where Aµ is the background

connection [29] (arbitrary element of the fibre). We will call this type of maps a Local

Maps (LM).

On the other hand, we can considerate Non Local Maps (NLM) that involve the

Wilson functional or ”Wilson Loop”, which is defined as the holonomy trace: W (c) =

trH(c) ≡ trP exp
(

i
∮

c
A

)

, with c an element of the Group of Loops [30] inscribed in 3+1

space-time.

Given the above definitions we present two primary considerations which will consti-

tute a possible gauge formulation for gravity:

1.- Assuming the existence of maps from G onto reals numbers R1, the metric tensor

in 3+1 dimension is realized with functionals that are gauge invariant under eq.(1) :

L.M. : gµν(x) ≡ Sµν

(

A(x)− A (x)
)

∈ R1 , (2)

or

N.L.M. : gµν(x) ≡ Sµν

(

A(x)− A (x), W (c)
)

∈ R1 , (3)

For any type of formulation, these relations will be written in the form: gµν (x) ≡
Sµν (A (x)), where Sµν is some functional of A (x).
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2.- The lagrangian density is

LG = − 1

4k

√

−S (A)F a
µν(A)F aµν(A) , (4)

where F a
µν(A) = Aa

ν;µ−Aa
µ;ν +CabcAb

µA
c
ν is the Yang-Mills curvature, Cabc the completely

antisymmetric structure constant and k a real constant. We will assume that eq.(4) is

a Lagrangian reformulation for Einstein theory, if the action IG =
∫

d4xLG (Aµ (x)) is

equal to the Einstein one, IR = 1/16π
∫

d4x
√

−g (x)R (gµν (x)) for a given gauge group

G. This is,

IG = IR . (5)

In virtue of the arbitrariness integration region we can say that:

− 1

4k
F a

µν(A(x))F aµν(A(x)) =
1

16π
R (Sµν (A(x))) + Ωµ

;µ(x) , (6)

where Ωµ(x) is a function of order r−n with n > 2, for r −→ ∞. This condition on Ωµ(x)

establishes that the constraint (6) (or ”non-holonomical” constraint, due to arbitrariness

of Ωµ(x)) selects the physical field A(x) for a given functionals Sµν .

These considerations can be argued as follows. The first one presents the connection

Aµ as the fundamental field on the way to enlarge the symmetries, yielding an invariant

formulation under General Transformation of Coordinates and gauge transformations.

Further, the only propagated degrees of freedom in this formulation corresponds to the

field Aµ. Thus, the number of local degree of freedom can be fixed taking an adecuate

gauge group G.

The discussion about which group G can be choosen, in order to match degrees

of freedom between this gauge formulation and gravity, is still open. The complete

constraint system will be considered elsewhere.

The second consideration is connected with the dynamical aspect of the gauge field.

A simplest gauge invariant first order lagrangian density is proposed. At the same time,

a non-holonomical constraint on field Aµ is presented.
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When a particular form of Sµν is performed (i.e., combinations in powers of traces

on Λµ ≡ Aµ− Aµ, etc.), the Yang-Mills like equations (see eq.(10)) are been prepared to

conduce a certain solution, but this Sµν must be consistent with constraint (6).

3 Dynamics

Here, a variational analysis on the total action I = IG + IM is performed. IM is the

matter fields action with variation δIM = −1/2
∫

d4x
√−gT αβ

M δgαβ. Then, thinking in

matter fields as external ones, arbitrary variations on Aµ yields

0 =

∫

d4x
√
−S

[

−1

2

(

T αβ
M + T αβ

F

)

δSαβ(A) +
1

k
(DµF µλ

)b
δAb

λ

]

, (7)

where T αβ
M is the matter stress tensor, T αβ

F is the Yang-Mills stress tensor defined by:

T αβ
F = −1

k

(

F aα
σ F aσβ − Sαβ

4
F a

µνF
aµν

)

, (8)

where Sαβ satisfies SαβSαµ = δβ
µ and Dµ is a covariant derivative under gauge transfor-

mations and Coordinates transformations defined by

(DµF
µν)b ≡ F bµλ

;µ + CbacAa
µF

cµλ . (9)

Here, F bµλ
;µ = 1√

−S
∂µ

(√
−SF bµλ

)

.

With an arbitrary δAµ, for any formulation (LM or NLM), the field equations are:

(

DµF
µλ

)b
=

k

2

(

T αβ
M + T αβ

F

)

Mλ
b αβ , (10)

where the object

Mλ
bαβ ≡ ∂Sαβ(A)

∂Ab
λ

, (11)

represents the ”Jacobian” of the map that goes from G to R1. In general it can be

observed that the solutions of eq.(10) will depend on which prescription we take for the

functional Sµν (satisfaying the constraint (6)).
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In order to close this section we want to comment about the relationship between

the Yang-Mills like equations and Einstein ones for any gauge group G. The gravity

equations are:

Rαβ − gαβ

2
R + 8πT αβ

M = 0 , (12)

with Rαβ the Ricci tensor. Let us call Nαβ = Rαβ − gαβ

2
R + 8πT αβ

M a non null object,

when Rαβ is not valued on Einstein equations (eq.(12)). Then, equalizing the total action

(I = IG + IM) with the obtained one from the Einstein theory (I = IR + IM), and taking

into account an arbitrary variation on fields Ab
λ with δSαβ = Mλ

b αβδA
b
λ , the following

equations can be obtained:

(

DµF
µλ

)b − k

2

(

T αβ
M + T αβ

F

)

Mλ
b αβ = − k

16π
NαβMλ

b αβ . (13)

If eq.(12) (in other words, Nαβ = 0) is introduced in eq.(13), the dynamical equations

(10) arise. However, in general would be possible to find solutions for Yang-Mills like

equations for a given functional Sµν(A(x)) does not corresponds to general relativity

solutions (i.e., Sµν(A(x)) 6= gµν(x)). This means in general that the space of solutions of

Yang-Mills like equations would contains the Einstein’s one.

4 Non trivial vacuum solution for the abelian theory

In order to obtain vacuum (T αβ
M = 0) stationary solutions for the abelian case we take

G = U(1)× N... ×U(1). In other words, we have N generators that satisfy a Lie Algebra

with Cabc = 0 for all a, b, c = 1, 2, ...N . Moreover, the physical system consists in a

compact spherical symmetric stationary object. This fact allows to assume a stationary

connection of the type Aa
µ = Aa

µ(r).

Thus, out of the compact object, the field equations looks as:

F bµλ
;µ =

k

2
T αβ

F Mλ
b αβ . (14)
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If one want to solve these equations, we can still give a special form to the connection

and metric. Thinking in Aa
µ (r), we take the electrostatic ansatz:

Aa
0 6= 0 , (15)

Aa
k = 0 . (16)

For the metric we choose a Schwarzschild form (diagonal and non time dependent):

diag(g00

(

Ab
0

)

,−1/g00

(

Ab
0

)

, r2, r2sen2θ), (17)

that will give an ansatz for the form of functional Sµν(A(x)).

Equations (15), (16) and (17) in (14) give

d2Aa
0

dr2
+

2

r

dAa
0

dr
= 0 , (18)

Aa
k = 0, (19)

and the solution is

Aa
0 = −na +

ba

r
, (20)

Aa
k = 0 , (21)

with constants na and ba. From eq.(6) is easy to probe that Ω1(x) ∼ O(1/r3). This

shows that the Schwarzschild ansatz (see eq.(17)) is satisfactory.

An interesting case of eqs.(20) and (21) occurs if we put ba = na2m, with the

Schwarzschild radius 2m:

Aa
µ = nag0µ , (22)
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pointing that Aa
µ is proportional to the gravitational four-potential of the Maxwell like

formulation that C. Möller [31] introduced in the gravitational energy localization prob-

lem. In that reference, the author defines a U(1) potential:

Aµ = g0µ , (23)

covariant under the Space-Time Orthogonal transformations subgroup, given by:

x
′i = f i(xj) , (24)

x
′0 = x0. (25)

Thus, relation (22) have the same subgroup of coordinate transformations.

Before ending this section, we want to explore the relation between the solution (22)

and the one obtained from other types of symmetries. Is easy to probe for the Reissner-

Nördstrom problem that eq.(22) solves eq.(18) up an order r−4 term. Obviously this is not

a vacuum problem because in this symmetry there is an electrostatic charge. However,

if T αβ
M is the stress tensor associated to a rest charge, we have

0 =
(

T αβ
M + T αβ

F

)

Mλ
b αβ , (26)

under the ansatz (15), (16) and (17). Thus, eq.(26) in (29) throw an equation system

equivalent to eqs.(18) and (19).

On the other hand, if one explore a non spherical symmetry (i.e., Kerr metric) it can

be shown that eq.(22) satisfies eq.(14) up to a term of order r−5 (with an ansatz similar

to (15) but with Aa
1 = Aa

2 = 0 and Aa
3 = Aa

3(r, θ)).

All this says that the stationary solutions of the abelian formulation (G = U(1)× N...

×U(1)) for Reissner-Nördstrom and Kerr symmetries, can be approached to eq.(22) at

the r → ∞ limit. This asymptotic behaviour is just the property that C. Möller [31]

needed in his formulation in order to define the total energy in a satisfactory way.
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5 The Newtonian limit

A required consistency condition of this formulation is that the Newtonian limit must be

recovered in the non relativistic weak field limit from the Yang-Mills like equations.

In a low speed regime (|vi| = |dxi/dx0| ≪ 1) and a weak gravitational field, we take

a Galilean Coordinate System xµ with a stationary metric gµν that defers up to a weak

perturbation (|hµν | ≪ 1) from the Minkowski metric (ηµν), in other words:

gµν = ηµν + hµν , (27)

with gµν = ηµν − hµν . Next is assumed a perfect fluid in which pressure and speed are

neglected in the Galilean System. Only the T 00
M component of material stress tensor

(related with the mass density) will be considered.

In order to complete the passage to the Newtonian limit from the Yang-Mills like

formulation we need to assume the next considerations. First, it is required the linear

behaviour of the gravitational field. In this sense, the gauge group must be G = U(1)× N...

×U(1).

Second, in the weak field regime, we can think that relation (27) arises from a pertur-

bation on the connection via eq.(2) or (3). In others words, performing an infinitesimal

variation δAb
µ(x) around a fixed Ab

oµ (Λoµ ≡ Aoµ− Aoµ fixed too) with Sµν(Ao) = ηµν , we

have

gµν(x) = Sµν(A(x)) = ηµν + Mλ
bµν(Ao)δA

b
λ(x) . (28)

So then, with Mλ
bµν(Ao) bounded, eq.(27) can be matched with eq.(28). Moreover,

the infinitesimal functions hµν(x) and δAb
µ(x) have the same order.

On the other hand, G = U(1)× N... ×U(1) in eq.(10) gives

F bµλ
;µ =

k

2

(

T αβ
M + T αβ

F

)

Mλ
b αβ , (29)

and taking only first order contributions in hµν and δAb
µ(x), the time component of the

left hand side of eq.(29) yields

F bi0
;i = −F b

i0,i = −∇2Ab
0 . (30)
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The Yang-Mills stress tensor
(

T αβ
F

)

constitutes a quadratic order contribution in

δAb
µ(x). With this, the time component of the right hand side of eq.(29) is

k

2

(

T αβ
M + T αβ

F

)

M0
b αβ =

k

2
M0

b00(Ao)T
00
M . (31)

Joining eqs.(30) and (31) in (29) for λ = 0, the next N equations are obtained

∇2Ab
0 = αbT 00

M , (32)

where αb = −k
2
M0

b00(Ao). Expression (32) is the Laplace equation for the Newtonian

limit of the Yang-Mills like ones.

6 Concluding remarks

In this work, an initial idea about a possible scheme for a reformulation of gravity theory

in a similar way of a Yang-Mills theory at a classical level was presented. This have been

made thinking in two factibles gauge invariant types of lagrangian formulations (LM or

NLM) which lead to consistent dynamical equations with the Newtonian limit.

A spherical symmetric stationary solution for the abelian case was obtained, showing

the relation with the Maxwell like four-potential of Möller. It would be interesting

to explore non abelian solutions for stationary spherical symmetry where a Bartnik-

McKinnon [32] type ansatz can be used.

The fundamental problem oriented to the quantisation bussines and related to the

Dirac’s canonical analysis of constraints [33] will be considerated elsewhere.
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